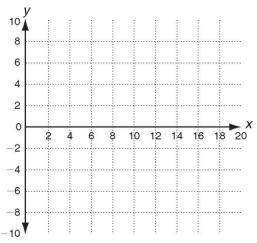

Section 5.7 Worksheet

Radical Functions

Graph each function.

1.
$$g x = \sqrt{x} - 2$$

X	g(x)	(x, g(x))
0	$\sqrt{0} - 2 = -2$	(0, -2)
1		
4		
9		
16		


a. Describe the transformation from the parent function.

b. Identify the domain and range.

$$2. \quad g \quad x = -\sqrt{x}$$

a. Complete the table of values, then graph.

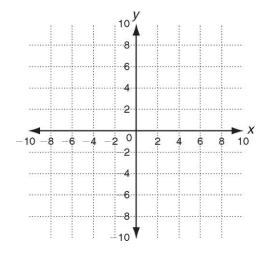
X	g(x)	(x, g(x))
0	$-\sqrt{0}=0$	(0, 0)
1		
4		
9		
16		

b. Describe the transformation from the parent function.

c. Identify the domain and range.

Solve.

3. Dale wants to horizontally stretch the function $f(x) = \sqrt{x+5}$ by a factor of 3. He writes the function $f(x) = \sqrt{3(x+5)}$. Is he correct? If not, what is the


The writes the function $f(x) = \sqrt{3} + 5$. Is no correct? If not, what is the correct function?

Graph the function and identify its domain and range.

4.
$$f(x) = \sqrt{x-4}$$

Domain: _____

Range: _____

Using the graph of $f(x) = \sqrt{x}$ as a guide, describe the transformation.

5.
$$g(x) = 4\sqrt{x+8}$$

6.
$$g(x) = -\sqrt{3x} + 2$$

Use the description to write the square root function g.

- 7. The parent function $f(x) = \sqrt{x}$ is reflected across the y-axis, horizontally stretched by a factor of 7, and translated 3 units down.
- 8. The parent function $f(x) = \sqrt{x}$ is translated 2 units right, compressed vertically by a factor of $\frac{1}{2}$, and reflected across the x-axis.

Solve.

9. For a gas with density, n, measured in atoms per cubic centimeter, the average distance, d, between atoms is given by $d = \left(\frac{3}{4\pi n}\right)^{\frac{1}{3}}$. The gas in a certain region of space has a density of just 10 atoms per cubic centimeter. Find the average distance between the atoms in that region of space.