Review Guide for Algebra

(Intermediate)

I) Linear equations and inequalities in one variable.

- Solve for x: x -1-(x+2)-(x-3) = x
 If five times the smaller of two consecutive integers is added to three times the larger, the result is 59. Find the integers.
 - 3) Solve for x; graph the solution on a number line: -5(2x+3) < 2x-3
- 4) Solve for x; graph the solution on a number line: -3 < 2x - 5 < 5

II) Exponents and polynomials.

- 1) Simplify; write the answer with positive exponents: $\frac{(2a^{-5}b^4c^3)^{-2}}{(3a^3b^{-7}c^3)^2}$
- 2) Simplify; write the answer with positive exponents: $(4x^2y^6z)^2(-x^5y^7z^8)^6$
- 3) Simplify; write the answer with positive exponents: $3x^2(x(2x-5(3x+2))-5)$
- III) Factoring.
 - 1) Factor completely: $49x^2 25y^2$
 - 2) Factor completely: $a^2 ac + ab bc$
 - 3) Factor completely: $49a^2 + 42a + 36$

IV) Radicals. All variables represent positive real numbers. $\sqrt{2}$

1) Simplify:
$$\frac{\sqrt{3}}{5-\sqrt{3}}$$

2) Simplify; all variables represent positive numbers:

$$(\sqrt{28x^2y^3z})(\sqrt{14xy^4z^3})$$

3) Simplify; all variables represent positive numbers:

$$\sqrt[4]{8a^2b} \cdot \sqrt[4]{4a^3b^3}$$

4) Solve for x:
$$\sqrt{x+1} = 3$$

V) Complex Numbers.

- 1) Simplify:
 i^{53}

 2) Simplify:
 $-\sqrt{-20}$

 3) Simplify:
 $(2+3i)^2$
- 4) Simplify: $\sqrt{-25} \cdot \sqrt{-81}$

VI) Quadratic Equations.

- 1) Solve for x: $2x^2 3x = 40$
- 2) Solve for x: $(3x+2)^2 = -16$

VII) Rational Expressions

1) For what value(s) of a is this rational expression undefined?

$$\frac{a^2 + 2a - 3}{3a^2 + 11a + 6}$$

2) What is the lowest common denominator for the following rational expressions?

$$\frac{3}{y}, \quad \frac{-4}{2y}, \quad \frac{3}{y^2+2y}$$

3) Simplify:
$$\frac{3}{x^2 - 1} - \frac{4}{x^2 + 3x + 2}$$

4) Simplify:
$$\frac{6a-18}{3a^2+2a-8} \cdot \frac{12a-16}{4a-12}$$

5) Solve for p:
$$\frac{3p}{p^2 + 5p + 6} = \frac{5p}{p^2 + 2p - 3} - \frac{2}{p^2 + p - 2}$$

VIII) Equations and inequalities in two variables.

- 3) Find the distance between, and the slope of the line passing through, the points (2,5) and (-3,7).
- 4) Write the slope-intercept form of the equation of the line passing through the point (-2,1) and perpendicular to the line 6x + 3y = 4.
- 5) Solve for x and y: 2x + 4y = 4x - 2y = 0
- 6) Solve. $|4x-3| \le 5$
- 7) Solve. |(2/3)x + 1| > 3
- 8) Graph the solution on the axes shown: $2x \ge 3y + 6$

				1.1	1.11				12.1	1					1.1			
+	-													-				-
4	_			_			_						_				_	-
1														1				-
Τ																		
1																		
+	-							-						-				-
4	_					_	-											_
	1																	
1	-																	-
-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
_																		
												1						
1	-	t	t	-	-	-	-	-	F	-	-		-					-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
_					_													
			\neg				-											
-	-	+	-	-	-	-	-	+	H	-	-	-	-	-	-		-	-
_	-	-	1	-	-	-	1	-	⊢	1	1	1	-	-				-
		Г	Г						г									
		-	-	-	-	-	÷	-	-	-	-	-	-	-	-	-	-	